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Abstract

With a multi-lab and university team, we propose to develop new methods for a Hydrodynamic and Radio-
graphic Toolbox (HART) that will enable a fuller and more extensive use of experimental radiographic data to-
wards better characterizing and reducing uncertainties in predictive modeling of weapons performance. We will 
achieve this by leveraging recent developments in areas of computational imaging, statistical and machine learn-
ing, and reduced order modeling of hydrodynamics. In terms of software practices, by partnering with XCP (RIS-
TRA Project) we will conform to recent XCP standards that are inline with modern software practices and stan-
dards and ensure compatibility and ease of inter-operability with existing codes.

Three new activities under this proposal include (a) the development and use of deep learning-based surro-
gates to accelerate reconstruction and variational inference of density fields from radiographs of hydrotests, (b) 
a model-data fusion strategy that couples deep learning-based density reconstructions with fast hydrodynamics 
simulators to better constrain the reconstruction, and (c) a method for treating asymmetries using techniques 
adopted from limited view tomography.

All three new activities will be based on improved treatment of scatter, noise, beam spot movement, detector 
blur, and flat fielding in  the forward model, and a use of  sophisticated priors to  aid in  the re construction. The 
improvements to the forward model and improved algorithmic design of the reconstruction when complete will 
be contained in the iterative reconstruction code SHIVA—a code project that we have recently initiated. The many 
ways in which machine learning can be used in the reconstruction work will be contained in a code HERMES 
that has been initiated with DTRA support. For example, the significant levels of acceleration that will likely be 
achieved by the use of machine learning techniques will permit us (and are required) to quantify uncertainties 
in density retrievals. Next, the two-way coupling between density reconstruction and model-based simulation 
of the hydrodynamics will be contained in code EREBUS, and will permit a fuller realization of the potential of 
the data to constrain the hydrodynamic model and better address issues related to asymmetries in the problem. 
Finally, we anticipate that the better consistency with physics achieved in our reconstructions will allow them to 
be used by X-Division more so than today.

1 Problem Statement

The Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) plays a key “last stop” role in the National Nu-
clear Security Administration’s approach to Stockpile Stewardship in the absence of nuclear tests [14]. However,
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the noisy and complex multi-scale and multi-physics environment of dynamic tests necessitates careful, quanti-
tative analysis of the radiographic data obtained from the facility to accurately reconstruct the density field and
obtain the various quantities of interest, such as the location of the metal edge, location of the shock, and other
details of the density distribution, along with three-dimensionality.

2 Program Needs and Gaps

The current approach to density reconstruction from radiographic data was conceived of in the early 90s and
the attendant "Bayesian Inference Engine" (BIE) software has been in use for over two decades [41, 42]. Having
performed over 90% of the radiographic analyses for DARHT during the past twenty years, we have identified
a number of shortcomings with the current approach that prevent it from making full use of the radiographic
data. These shortcomings range from slowness of the analysis (it takes months to analyze a hydrotest), reliance
on axisymmetry [51, 53, 98], lack of a physics model to describe scatter [98], lack of incorporation of an underlying
model linking the temporal dynamics [68], no formal treatment of noise [98], as well as largely empirical models
to describe the detector blur [98]. These shortcomings limit the ability to provide robust estimates of uncertainty
[19–21, 98, 99]. Furthermore, because of its use of antiquated and proprietary software tools, developments in
related fields over the intervening couple of decades that can help overcome these shortcomings cannot be readily
brought into the current approach/framework (BIE).

3 Research Approach

In inverse problems such as density reconstructions from radiography data, it is typical to build an "outer loop"
over a physics-based forward model to ensure physical consistency of the found solution. In a first view of the
density reconstruction problem, e.g., as with a single radiographic image, the forward model may be thought of
as comprising only the radiographic measurement system. However, when we have a temporal sequence of ra-
diographic data, it is possible, and perhaps necessary, to enlarge the notion of the forward model to include the
hydrodynamic system in addition to the radiographic measurement system. Finally, when a temporal sequence
of images along one axis is augmented with an image along a second axis, the forward model has to be similarly
augmented.

This hierarchical view of DARHT radiographic data forms the basis for our three proposed activities: (a) the
development and use of deep learning-based surrogates to accelerate accurate reconstruction and variational in-
ference of density fields from radiography of hydrotests, (b) a model-data fusion strategy that couples deep learn-
ing/and or Koopman Operator projections to allow for density reconstructions with fast hydrodynamics simulators
to better constrain the reconstruction, and (c) a method for treating asymmetries using techniques adopted from
limited view tomography. All three activities will be based on improved treatment of scatter, noise, beam spot
movement, detector blur, and flat fielding in the forward model, and a use of sophisticated priors to aid in the
reconstruction.

The first proposed activity, in addition to providing all current capabilities, will likely perform better and permit
a characterization of uncertainties in density retrievals. The two-way coupling between density reconstruction and
model-based simulation of the hydrodynamics in the other activities will permit a fuller realization of the potential
of the data to constrain the hydrodynamic model and better address issues related to asymmetries in the problem.
Finally, we anticipate that the better consistency with physics achieved in our reconstructions will allow them to
be used by X-Division more so than today.

These activities will be integrated in a Hydrodynamic and Radiographic Toolbox (HART). A schematic of this
toolbox is shown in Figure 1. We present these approaches in increasingly levels of complexity to address both
the direct replacement of BIE with a modern fully parallel iterative reconstruction algorithm (SHIVA) including
enhancements in virtually all aspects of the physics including a complete descattering algorithm, as well as en-
hancements in optimization routines, and the use of plug-and-play priors as described below. The code HERMES
addresses our desire to leverage our successful neural networks in performing both descattering as well as density
reconstructions in real time. EREBUS expands upon the HERMES code by coupling a hydrodynamic prior to al-
low for the most accurate density fields to be obtained from the data in a manner consistent with an underlying
hydrodynamic path.
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Figure 1: A schematic of the toolbox, which comprises the codes Shiva, Hermes, and Erebus.

3.1 Improvements to the Forward Model

Density reconstructions obtained from radiographs of dynamic tests are complicated by the noisy and complex
multi-scale and multi-physics environment. As such, while there are robust features in such reconstructions such
as the shock location and edge location that may be extracted with quantifiable uncertainty from a combination
of static experimental data as well as from sensitivity analysis, other aspects such as details of the density field are
subject to greater uncertainty. The latter uncertainties arise from our inability to exactly represent various aspects
of the radiographic measurement system, such as scatter, beam spot movement, beam-target interactions, beam
dynamics repeatability, and aspects of the image formation process in the forward model.

The most crucial part of any model, and consequently the radiographic inversion, is the understanding of the
underlying physics. As previously mentioned, the BIE forward model almost exclusively relies upon empirical
models and thereby conflates physics. Consequently, this code, in its current state, cannot be relied upon to per-
form density reconstructions to the level of accuracy needed to inform the hydrodynamic codes. Accordingly, we
have developed physics models to replace many of the missing or incorrect models utilized in the previous radio-
graphic reconstruction approach. These physics models will be used in the iterative reconstruction approach. In
addition, they will be applied to the data generation for the machine learning approach.

We now discuss our current physics models that we propose to implement into the forward model to enhance
the data fidelity term and improve density reconstructions.

Detector Physics and Noise

Detector blur consists of the blurring of X-rays and that of optical light photons, both within the scintillator, and
the blur due to the lens system coupling the scintillator to the camera. Having performed transport simulations of
scintillator X-ray blur using MCNP6 [38], and that of optical light photons using GEANT4 [2], and having measured
blur due to the lens, we will combine models for each of these components into an overall model for detector blur.
A similar procedure of detailed simulation and measurement will be used to develop and calibrate a noise model.
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Beam Physics

The inference of the DARHT source spot is currently performed using the BIE using resolution resolution targets
fielded several days prior to the dynamic experiment [28, 45]. However, in so far as the source may both move and
also possess different characteristics during the dynamic experiment than those inferred during the characteriza-
tion shots performed prior to the dynamic experiment we propose to re-examine this approach. The approach
will incorporate both measurements obtained from the beam focusing diagnostics during the dynamic experi-
ment as well as beam measurements, pinhole measurements leading up to the shot. In addition, we propose to
perform simulations using Particle in Cell (PIC) codes [26, 89], MCNP [38], GEANT [2], as well as LASNEX [112] to
model the beam characteristics. Using these calculations, we propose to perform sensitivity studies to examine
the impact of variations in physical machine parameters on the beam characteristics i.e., shape, size, energy, cur-
rent, and location. This will allow for the establishment of actual requirements on the physical parameters that
control the beam spot formation and thereby limit potential variations during the dynamic experiment. Indeed,
by establishing these requirements we will reduce the variability of the beam spot characteristics and reduce the
need for the empirical model utilized within the current radiographic model. Presently, the model of the gamma
spectrum is assumed to be the same for all four pulses on DARHT Axis II. Simulations [92] have shown that there
can be significant variations ( 20%) in the gamma ray spectrum on DARHT Axis II for the four pulses and that these
variations are sensitive to the dose format and the target geometry. We plan to incorporate these variations in the
energy spectra into our radiographic models. Furthermore, we have proposed using the Compton Spectrometer as
a means to experimentally validate the energy spectra. Finally, we will address the alignment between the object
and source as well as the source to the GRC. If successful, this could potentially remove the angular dependence of
the beam striking the target.

Flat Field Treatment

A flat field is an image taken without an object in the line-of-sight but with a significant amount of attenua-
tion. Ideally, this would result in an image with no transverse structure. The measured image shows the impu-
rities/variations of the scintillator pixels, imperfections in the septa between the scintillating material and the
camera, and, more importantly, the gain variation of each camera pixel. In current analysis techniques, the dy-
namic image is divided by the flat field image to remove the high frequency intensity modulation and the septa in
the dynamic image. There are several drawbacks to this method. First, the flat field image is typically taken 1–3
days prior to a dynamic experiment due to physical constraints. As discussed previously, the beam characteristics
e.g., spot size and location may change between the flat field and dynamic images, which introduces errors in the
preprocessed image. Second, the flat field image contains a non-stationary scatter field. It should be noted that in
the BIE forward model, scatter in the flat-field was incorrectly assumed to be zero [65]. This phenomenon has been
unaccounted for and has caused problems in past density reconstructions [66]. Finally, dividing a noisy dynamic
image by a noisy flat field image increases the both the magnitude and complexity of the noise in the final image,
making feature and density identification more difficult.

We propose to investigate more sophisticated methods of preprocessing the dynamic image instead of dividing
by the flat field image. The dynamic image can be converted into frequency space, and the scintillator septa can
be removed by clipping that particular frequency of the image. The patchiness of the scintillator can be learned
using machine learning techniques and applied to the dynamic image using feature location identification.

Scatter Closure Relationship

We will improve upon the current practice of modeling scatter as an additive (polynomial) field independent of
the density field [98] by developing a closure-based model that relates the scattered radiation to the density field
being radiographed [60, 67, 69]. This development will be based on detailed computations using MCNP6 and will
leverage our NNSA/DTRA-funded efforts to descatter radiographic images [65, 69] (briefly described below).

Briefly, our kernel based scatter models are based on a general representation given by,

S = f (D), (1)

where S is scatter and D is the direct transmission in the absence of scatter. Furthermore, we have developed
models that represent the functional by,

S = (C ¯D)∗Kt (D), (2)
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Figure 2: Scatter removal using the kernal-based physics-based model reduces density reconstruction errors, as
illustrated on 10 separate objects.

Figure 3: A Convolutional Neural Network (CNN) was trained to learn the mapping from direct radiation to scat-
tered radiation. The black traces show the direct signal, the blue traces show the true scattered signal, and the red
dashed traces show the predicted scatter signal from the CNN.

where ¯ denotes pixel-wise multiplication and ∗ denotes convolution. Here, C is a multiplicative field that weights
different rays in the transmission according to the areal mass of material along the ray so that a larger areal mass
traversed would mean more scattered photons, and K is a scatter kernel (estimated from MCNP scatter simulations
of axis-symmetric objects). Results using this approach are shown in Figure 2.

More sophisticated scatter models assign different scatter kernels for different ranges of areal masses. We have
explored models of the form,

S = Scoherent(D)+α(D)Scompton(D), (3)

where Scoherent and Scompton are the estimates of coherent and first-order Compton scatter modeled separately
(e.g., via local convolutional kernels and/or with multiplicative fields), and α(D) is an additional scaling of the
Compton scatter to account for higher-order Compton scatters (e.g., coherent scattered photons that undergo
subsequent Compton scattering, etc.).

Finally, Convolutional Neural Network (CNN)-based scatter models learned from data sets of MCNP scatter
simulations have also been examined, where the function f in (1) is a neural network with learnable weights
[60, 69]. An example of these results is shown in Figure 3. Future research is anticipated in this area to enable
a CNN architecture that is based on the physics of scattering processes, similar to networks parameterized by the
Neumann expansion for use in electromagnetic scattering [36]. These models may have the natural advantage of
being more generalizable and easier to train than general CNNs.

The above scatter models will be used to descatter experimental radiographs and perform density reconstruc-
tions. Both fixed point and optimization approaches will be used for descattering. The fixed point approach mod-
els the transmission as,

T = D + f (D), (4)
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where T is the total transmission, D is the direct transmission and f (D) is a scatter model. This method starts with
an initial estimate,

D ≈ D0 = T, (5)

and iterates between computing scatter at the k-th iteration as,

Sk = f (Dk−1), (6)

and estimating the direct transmission as,

Dk = T −Sk = T − f (Dk−1). (7)

An additional projection of Dk onto the non-negative orthant may be needed to avoid unrealistic estimates. This
fixed point algorithm is fairly simple, computationally very efficient, and is run until convergence (i.e., until the er-
ror between subsequent estimates of D are sufficiently small). However, its robustness in the presence of detector
noise is not well studied.

An alternative approach we will investigate for descattering is solving the optimization problem,

D̂ = argmin
D≥0

‖T −D − f (D)‖2 +λR(D), (8)

where we aim to find the non-negative direct signal D that provides the best fit (in the l2 sense) of,

D +S = D + f (D), (9)

to the transmission T . An additional regularizer, or prior, on D is included as is common in optimization-based
reconstruction. The squared Euclidean loss can be generalized to other loss functions, depending on the noise
model for measurements, e.g., Poisson noise.

The scatter models along with the descattering algorithms may be implemented into both our iterative recon-
struction algorithm as a prior as well as in our Convolutional Neural Network Reconstruction algorithm to correct
one of the fundamental flaws in the current radiographic approach.

Using the scatter models and accompanying descattering algorithm, we have obtained very promising results
that demonstrate the accuracy of scatter modeling as well as descattering techniques (Figures 2).

Finally, it should also be noted that one of the convolutional kernel-based descattering methods was previously
utilized on a recent hydro-test to allow for the best density reconstruction with Axis 2 radiographic data to date
[58, 63].

Bucky Grid Model

An associated aspect of modeling scatter is the treatment of the Axis 1 Bucky Grid. The current empirical polyno-
mial model of the Bucky Grid, when compared to a physics-based scattering model, has been shown to result in
errors in the density reconstructions of the French Test Object that are actually larger than those without the Bucky
Grid [56,57]. As such, we will replace the empirical model with models that we will develop using kernel-based and
machine learning approaches after conducting detailed simulations.

Having addressed the major improvement to the physics that will be utilized in all of our algorithms, we now
present details of the three respective codes that comprise HART (Figure 1). These approaches in increasingly
levels of complexity include the direct replacement of the iterative forward model of the BIE with a modern, fully
parallel, iterative reconstruction algorithm (SHIVA). It will contain enhancements in virtually all aspects of the
physics including a complete descattering algorithm, enhancements in optimization routines, and the use of plug-
and-play priors as described below. The code, HERMES, addresses our desire to leverage our successful neural
networks in performing both descattering as well as density reconstructions in real time. EREBUS expands upon
the HERMES code by coupling a hydrodynamic prior to allow for the most accurate density fields to be obtained
from the data in a manner consistent with an underlying hydrodynamic path.
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3.2 Improvements to the Outer Loop

The traditional approach to solving the radiographic inversion problem with a complex non-linear/non-convex
forward model is to use iterative reconstruction techniques. Mathematically we may express this problem as:

x̂ = argmin
x

F (x)+∑
i
αi Ri (x) (10)

where F (x) is the data fidelity term capturing the forward model of the imaging process and the statistical models
of measurements and noise, and the Ri (x) are regularizer models for the desired image. The scalar parameters αi

control the relative strength of the respective regularizers.
The determination of the correct density distribution from (10) is contingent not only upon formulating a

proper physics-based forward model, but also imposing appropriate regularization and effective schemes to solve
the optimization problem.

Priors and Regularized Inversion

Regularization, i.e., the use of a prior, is vital when solving ill-posed inverse problems, such as attempting to per-
form radiographic inversions. The regularizer mitigates the ill-posedness of the inverse problem by encouraging
solutions to obey a particular model and/or have certain desirable properties [6]. Expressive prior models that
properly capture the salience of the underlying data lead to improved solution fidelity.

In the over twenty years since Hansen formulated the BIE [41,42], significant progress has been made in devel-
oping powerful new priors for imaging applications by both our team and the larger community. Indeed our team
members have been significant contributors in this area of research.

Many popular prior models are based on sparse representation. For example, smoothness can be viewed as
sparsity of the gradient under the finite-difference operation [32,79]. More sophisticated priors are based on spar-
sity under directional multi-scale decompositions such as wavelets, shearlets, and curvelets [16, 17, 34, 73, 79, 102].
More recently, robust prior models have been learned in conjunction with the image reconstruction process by
several team members [23, 44, 87, 88, 100, 109, 110].

In parallel, there have been significant advances in the solution of the simplest inverse problem: image denois-
ing. These denoising algorithms typically combine sparse representations with non-local self-similarity [13, 25].
More recently, denoising algorithms based on Deep Convolutional Neural Networks have obtained performance
beyond what was previously thought possible [111]. However, as these denoising algorithms typically incorporate
image models in an implicit manner, it is not obvious how to leverage them to solve a general inverse problem of
the form (10); that is, the denoising algorithm does not correspond to a particular regularization function R(x).

Plug-and-Play Priors is a recent technique that exploits ideas from proximal optimization algorithms to com-
bine a solver for the forward model with a generic image denoising algorithm in a modular way [104]. Using
the Plug-and-Play Prior approach, powerful image denoising algorithms can be utilized to solve a generic inverse
problem of the form (10).

The Plug-and-Play framework [95,97,104] is based on a direct application of the Alternating Directions Method
of Multipliers (ADMM) [105] that has recently become popular for the solution of a variety of MAP estimation/
regularized inverse problems. The ADMM works by first splitting the state variable so as to decouple the prior
and forward model terms of MAP estimation problem. The application of the ADMM technique to the resulting
constrained minimization problem then results in two decoupled optimizations, one for the forward model and
one for the prior model. We note that this allows for a completely decoupled software implementation.

Using these advanced techniques we submit that we can significantly improve upon the current limited tech-
niques within the existing radiographic code.

Optimization

Inverse problems and machine learning problems typically involve minimizing either convex or nonconvex cost
functions [32], sometimes with additional constraints (e.g., non-negativity of material density in radiographic
imaging, constraints based on hydrodynamics laws, etc.). Before proceeding it should be noted that if the ob-
jective is not convex, only a local minimizer can be found. Gradient-based algorithms (e.g., gradient descent, con-
jugate gradients) or quasi-newton methods (e.g., BFGS [35], L-BFGS [15]) are often exploited for unconstrained
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optimization involving convex, smooth objectives. We will also explore the use of Nesterov’s proposed fast gradi-
ent method (FGM) [84]. Moverever, algorithms like the optimized gradient method (OGM) [50], which guarantees
a 2× worst-case speedup over the FGM, will also be examined.

We will also examine majorize-minimize (MM) and proximal mapping-based methods that enable alterna-
tives such as the fast iterative shrinkage-thresholding algorithm (FISTA) [5] and the proximal optimized gradi-
ent method [50], both of which have been shown to provide convergence of the cost. Variable-splitting based
methods such as the the augmented Lagrangian method [1] and the alternating direction method of multipliers
(ADMM) [12] have also been highly popular for convex and nonsmooth or constrained optimization problems.
The MM methods encompass a broad array of algorithms that are helpful even in cases when the objective is non-
convex. Quadratic surrogate algorithms is one class of such methods that rely upon optimization transfer to solve
non-convex optimization problems.

Finally, distributed and asynchronous optimization algorithms [4,86,96] are garnering increasing attention re-
cently and could be applied to large-scale radiographic inverse problems and machine learning tasks. Additionally,
we will make use of automatic differentiation techniques so that new cost functions and regularizers can be easily
implemented without the need to manually compute gradients [8, 43, 49].

Machine Learning based Reconstruction

While the traditional iterative reconstruction based on a forward model will be a part of the toolbox, we addition-
ally propose to use machine learning approaches to accelerate the reconstruction process. As shown below, our
preliminary results are encouraging and demonstrate the feasibility of the approach. We now briefly summarize
our approach.

Recent advances in machine learning, in particular deep neural networks (DNNs), have translated into state
of the art performance in a wide variety of computational imaging tasks (e.g., see the recent review by Gilton
et al. [36]). These methods vary in how knowledge of the image formation process (i.e. the forward model and
noise distribution) is incorporated into the learning process. One approach is to learn a DNN to implement the
reconstruction mapping. This approach relies entirely on the learning algorithm to infer all relevant information
from given training pairs, and does not explicitly rely on the forward model or noise distribution. The application
of such a DNN is orders of magnitude faster than traditional iterative reconstruction techniques [18].

An alternative approach is to incorporate knowledge of the forward operator and physics directly in the struc-
ture of the neural network. One way to accomplish this is by first applying an approximate inverse of the forward
model to measurements, then passing the result into a neural network [47]. An alternative approach utilizes neural
networks in the Plug-and-Play framework.

In addition, we plan to explore the use of physics-based machine learning approaches by incorporating the
projector into the machine learning as well as more fundamentally-based architectures motivated by techniques
comparable to the method of moments [30]. These techniques will provide an underlying tie to physics, which
should enable learning from comparatively few training pairs.

We will leverage our work performed for DTRA/NNSA which has achieved tremendous progress in performing
reconstructions using a pure Convolutional Neural Network (CNN) to learn direct-to-density and direct-to-scatter
mappings for Emergency Response Applications. We have combined these mappings with a fixed-point optimiza-
tion scheme to develop a state-of-the-art descattering algorithm.

We now present some results from our DTRA/NNSA work to better illustrate the approach [60]. We have con-
structed test problems in which five materials out of 18 available materials were selected at random to build a
series of five concentric spheres with an outer radius ranging from 10- 50 cm. Each shell thickness was also ran-
domly selected. Simulated radiographs of direct and scattered radiation were then generated using MCNP6 [38]
with a poly-energetic bremsstrahlung source to both train the networks as well as test the ability to reconstruct
the density objects. The reconstructed radiographs were also performed in the presence of noise, departures from
assumed energy spectra, and blur. The histogram of RMS density reconstruction errors, along with representative
samples, is shown in Figure 4. Note that the after training the neural network, the results are obtained almost
instantaneously.

We have also constructed a neural network to learn the scattered radiation from the direct radiation which may
be utilized in the descattering algorithms described above. Results from this CNN are shown in Figure 3.
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Figure 4: Density reconstruction from polyenergetic direct measurements using CNNs yields promising results.
Top: Histogram of normalized RMS density reconstruction errors for 100 test objects. Middle: The log of direct
radiation is the input to the CNN. We show the true density and the predicted density fields. Bottom: Radial line-
out of the true (red) and predicted (green) density distributions.

3.3 Dynamic Reconstruction: Coupled Radiographic and Hydrodynamic Inversion

While the density reconstructions obtained using our CNNs look very promising to reconstruct single radiographic
slices from simulations, our extensive experience in reconstructing experimental radiographic data suggest that
the inability to perfectly descatter as well as a multitude of other experimental artifacts i.e., beam spot movement,
uncertainties in both accelerator behavior etc., will likely introduce error into our density reconstructions. Fur-
thermore, our experience also has proven that inclusion of "fitting parameters" utilized within the BIE methodol-
ogy does not afford either a physics or mathematically justifiable model that enables the determination of density
fields with sufficient accuracy to inform the hydrodynamic codes and satisfy X-Divison.

Given this complicated scenario, we think it is advantageous to consider separate methodologies in an initial
phase that on the one hand builds on robust aspects of the reconstruction and on the other hand develops other
procedures to deal with and use the more uncertain aspects of the reconstruction. For example, with such an ap-
proach, robust aspects of the reconstruction can be leveraged to bracket certain parametric uncertainties in the
hydro model. Indeed, such an approach based on realizing consistency between the radiographically diagnosed
density field and its hydrodynamically simulated counterpart requires us to not only use fast methods for density
reconstruction that leverage deep learning methodologies [37, 71], but also as importantly utilize reduced repre-
sentations of the hydrodynamics using recent developments in the field such as Dynamic Mode Decomposition
(DMD) [81, 90, 91, 101, 107]. This latter aspect of our proposal is unique to our approach and endows the method-
ology with various attractive features such as the possibility of establishing certain bounds on uncertainty and
retaining the underlying dynamic path of the dynamic phenomena.

Accordingly, we will utilize the temporal dynamics afforded by the temporal radiographic data at DARHT to
constrain the solution to the manifold given by the hydrodynamic phenomena rather than simply using individual
radiographic time slice to perform density reconstructions. Furthermore, we will utilize one of the great math-
ematical discoveries of the 20th century i.e., Koopman Operator Theory, to facilitate this process [70]. This will
enable a physics-based constraint on the temporal evolution of the density field that may allow for a potential
breakthrough in our ability to perform high fidelity density reconstructions. Importantly, our consideration of the
underlying physics permits us to make generalization and uncertainty estimates which would otherwise not be
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possible using traditional neural network approaches.
Our development of a methodology that uses a technique first proposed by Koopman to effectively map the

non-linear behavior of a dynamic system onto a linear space draws upon recent advances in computing the Koop-
man modes using Dynamic Mode Decomposition (DMD) and associated modifications [81,90,91,101,107]. Using
the Koopman linear operator representation of the underlying physics facilitates the inclusion of hydrodynamics
in the iterative framework for density reconstruction, and permits the examination of the parameter space with
high accuracy and thereby reduced computational time to investigate a multitude of physics models and their
associated parameters for EOS, material strength and high explosives.

Before presenting our promising results using this remarkable theory we briefly remark that indeed Koopman
operator theory has had tremendous success in representing high complex physics in many fields including fluid
dynamics turbulence and reactive flows [81, 90]. As an illustration we present the results of Schmidt whose pio-
neering work led to a resurgence in the use of the Koopman operator theory as given by his development of the
DMD algorithm to find Koopman modes. In this example Schmidt demonstrated that DMD could capture the nu-
merical simulation of a flame based on a variable-density fuel jet. The numerical simulation and the DMD result
is illustrated in Figure 5 [91] .

Indeed, we have had tremendous initial success using DMD to represent the Koopman operator for many hy-
drodynamic systems of interest using both analytical solutions as well as solutions obtained using computational
fluid dynamic codes i.e., CTH [80]. Figure 6 illustrates that DMD can represent the canonical Sedov explosion [11].

Furthermore, we have demonstrated that we can then use other DMD representations of hydrodynamic simu-
lations to match the major features i.e., the outer edge location as well as the shock location, and identify degen-
erate solutions, see Figure 7. In addition, we have shown that interpolation of hydrodynamic solutions is possible
with very high accuracy thereby reducing the computational complexity of computing many solutions. Indeed, we
have shown great process in the ability to represent hydrodynamic behavior as described by the coupled partial
differential equations with a mapping obtained via DMD to represent the density field. Accordingly, we present a
framework for a coupling of a radiographic and hydrodynamic code in Figure 8.

Figure 5: Selected (equispaced) snapshots of a passive tracer from a numerical simulation of a reactive flow. One
shedding cycle is shown in a subregion of the full computational domain

3.4 Limited View Reconstruction Methods

Although reconstructions at DARHT have been performed for almost twenty years using the axisymmetric as-
sumptions, almost every DARHT shot has exhibited clear evidence of three dimensionality. In fact, this was first
recognized by Klasky where he pointed out this out to the BIE community [53, 55, 64]. Later Makaruk verified this
finding [75–78].

While some work has been performed to circumvent the axisymmetric assumption used to perform recon-
structions for the DAHRT data using the BIE, reconstructions still suffer due to this assumption [52,54,58,59,61,62].
The limited view radiographic data acquired at DARHT in conjunction with the axisymmetric assumption limit the
application of traditional tomographic methods afforded by the use of filter back projection algorithms that require
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Figure 6: Density as a function of radius are shown for the exact Sedov solution and the DMD reconstruction in
cyan and black, respectively for our set of four snapshots. The ambient density of ρ0 = 30.2 was not in the set of
solution space used to construct the initial DMD solution.

Figure 7: Confidence intervals are shown for density as a function of radius. The black curves denote the 99%
confidence interval for the case when only the shock locations are used. The green contour shows the best fit for
the 1% lowest χ2 values for the case when the map is constructed using the DMD generator function with density
increments ∆ρ0 = 0.02.

many views [31]. However, we can use a priori knowledge about the properties of the object to restrict the solu-
tion to the physically plausible domain. Indeed, we are currently investigating methods to enable the extraction
of additional information from the data using priors as well as data-simulation fusion, for enabling additional in-
formation from the two-views of today, and potentially additional views of tomorrow, to allow for higher quality
reconstructions.

We have begun this progression to more modern techniques to perform limited view reconstructions by ex-
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Figure 8: Flow-chart for EREBUS coupled Radiogrpahic and Hydrodynamic Reconstruction

Figure 9: Tomographic Reconstruction of a walnut using FDK with segmentation.

amining a variety of canonical phantoms i.e., Shepp Logan phantom [93], to X-cat phantom [10], as well as the
reconstruction of walnuts using Micro-CT [27]. In Figure 9 we present a segmentation of tomographic reconstruc-
tion using a 4501 views using filtered back projection of a walnut using a standard FBP algorithm.

Traditional filtered backprojection reconstruction techniques have allowed for excellent reconstructions using
a full complement of views, but this technique cannot, in general, provide for reconstructions with very limited
data. Indeed, in Figure 10 we demonstrate the inability of the filtered backprojection technique to perform ade-
quate reconstructions when there are limited views.

Indeed, this was a major issue when the number of views for the Advanced Hydrodynamic Facility was being
evaluated. In fact, the assessment based on existing techniques i.e., FDK eventually led to the abandonment of
the concept and eventual refocusing to DARHT, [72]. However, methods to perform tomographic reconstructions
with incomplete projections have proliferated in the last two decades. Starting from the Algebraic Reconstruction
Technique (ART) [82] and later SART (Simultaneous Algebraic Reconstruction Technique) [3] as well as maximum
likelihood expectation maximization algorithm have been proposed [103]. Other techniques including penalized
likelihood reconstruction [33] and compressed sensing using total variation regularization total variation [94], as
well as wavelet based techniques [74] to treat incomplete projections have allowed for improved reconstructions
when limited projections are available [22, 46, 106].

Indeed, we have utilized a penalized least square method to perform reconstructions of the XCAT phantom as
well as walnuts to achieve much better reconstructions than those achievable using standard filterd backprojec-
tion techniques [33]. These improved results for the walnut tomographic reconstructions may be observed from
examination of in Figure 11

While there has been substantial improvement in the reconstructions using the traditional regularization ap-
proaches, a more recent trend is the application of deep learning (DL) to X-ray CT reconstruction [40, 108]. Cier-
niak combined a backprojection operation with a Hopfield neural network to reconstruct a CT image from pro-
jections [24]. Based on a persistent homology analysis, Han developed a deep learning residual architecture for
sparse-view CT reconstruction [40]. Using multi-scale wavelets, they extended their work to limited angle CT
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Figure 10: Filtered backprojection reconstruction of walnuts using various number of projections. Reconstruction
fidelity increases with additional projections.

reconstructions. More recently, a new deep learning reconstruction framework for CT with incomplete projec-
tions utilized tight coupling of the deep learning U-net and FBP algorithm in the domain of the projection sino-
grams [29]. Indeed, DL methods described have shown tremendous potential in reducing the number of views
and retaining excellent reconstruction ability [39, 48, 85]. Consequently, we have begun to employ these methods
in addressing limited view tomographic problems. Indeed, Han of our team has utilized his residual learning net-
work to demonstrate the tremendous improvements that can be afforded relative to traditional total variational
approaches to limited view reconstruction, as shown in Figure 12 [40].
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(a) (b) (c)

Figure 11: Limited-view tomographic reconstruction of walnut. (a) Ground truth of walnut slice. (b) FBP recon-
struction from 16 views suffers from severe streaking artifacts. (c) Total-variation regularization mitigates streaking
artifacts and yields a high-quality reconstruction.

Figure 12: Limited-view tomographic reconstruction of the XCAT phantom. The first column shows three slices
of the ground truth XCAT phantom. Traditional filtered backprojection (column 2) results in streaky artifacts due
to the limited number of views. The second column shows a traditional filtered backprojection reconstruction.
The third column shows the reconstruction obtained using total-variation regularization; while an improvement
over FBP, streaky and patchy artifacts are present. The fourth column shows reconstruction using Deep Resid-
ual U-Net reconstruction [40]; these reconstructions contain significantly fewer artifacts than the total-variation
reconstructions.
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4 Integration with X-Division Code

We are currently working with the X-Div to utilize both software principles as well as interfaces to allow for in-
tegration of HART into RISTRA. The integration of these codes will more readily allow for the design community
to better utilize the radiographic data as well as serve as a mechanism to improve the collaboration between the
experimentalist/radiographic analyst, and the design community.

5 Uncertainty Analysis

We have recently proposed the use of our machine learning based reconstruction algorithm to address uncertain-
ties in weapons performance in a principled scientific manner. Here we briefly we summarize the two proposed
approaches.

While it is clear that a Bayesian framework is well suited to comprehensively quantify uncertainty in this con-
text, the chief impediment to a practical realization of such an analysis is the immense computational cost of the
physics-based forward model C f wd . In the first approach, we will include the deep learning based forward model
in a Bayesian inference framework [83] to establish uncertainties in the reconstruction. Again, recent improve-
ments in computational inference methods will be brought to bear on this issue e.g., by using Hamiltonian Monte
Carlo whose computational cost only scales as 103 ×C f wd as compared to Metropolis based schemes whose cost
scales as 106 ×C f wd [7].

In the second approach will use Bayesian machine learning and variational inference methodologies to im-
prove upon the deep learning models. For example, variational inference methods have now been developed that
brings the cost of probabilistic inference to levels comparable to that of point estimates [9]. Subsequent to this,
we will utilize learned models for performance metrics to assess the propagation of these uncertainties to perfor-
mance metrics.

6 X-Division Collaboration

With the curtailment of nuclear testing, the use of radiographic data is crucial in the certification of the stockpile as
well as in other weapons related activities. Consequently, the full exploitation of the DAHRT radiographic data is
crucial in improving our understanding of weapons physics. As such, it is imperative to obtain the highest quality
of information from the radiographs as well as estimates in their uncertainty.

While the use of current radiograhic data in conjunction with the BIE has provided the opportunity to improve
our qualitative understanding of hydrocode performance via qualitative density reconstructions, major physics
improvements to the forward modeling as well as significant improvements in the priors i.e., hydrodynamic priors,
are necessary to enable the quantitative comparison of density fields from the radiographic data.

Currently, the radiographic data is used to verify high explosive (HE) models used in the codes. Most HE models
parameters are based on experimental data from simple experiments. These parameters are sufficient for some
geometries, but do not provide high levels of accuracy in complex geometries. It is therefore important to have
radiographic reconstructions to verify shock locations for code predictions.

Radiographic data may also be utilized to examine modeling parameters for material strength as well as EOS
models. However, the refinements in both the physics models utilized in the forward model as well as a more
proper treatment in the temporal dynamics and asymmetries is necessary. These refinements to the radiographic
reconstruction modeling will afford the designers the ability to make adjustments to the models based upon high
fidelity reconstructions.

XTD-SS is currently lending support to provide 1D density fields to seed the machine learning process. The
next steps will involve the generation of both two and three dimensional density fields. As the process evolves
both models can be used to verify the density reconstruction process.

7 Software Engineering

Given the production community that this toolbox is targeting, we will follow good software engineering practices
so that the toolbox will work readily with stakeholder communities. We will leverage our connections with the
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ASC Ristra Next Generation Code Project and follow their standards for software quality assurance: Like Ristra, we
will employ web-hosted Git repositories for source code revision control, git workflow with forks, branches, pull
requests (PR) and code reviews, unit tests and automated regression testing, documentation of meetings using
collaboration tools such as confluence.

Each team member will have a personal fork of the main project repository, and development of new features
or bug fixes is generally done on a task-specific branch within that fork.

When changes for a new feature are considered ready, a pull request (PR) is submitted to the project’s main
repository. Creation of a PR automatically triggers a continuous integration (CI) system, which will run a set of
builds and tests of the new code. Other team members are also notified of the new PR, and are given an opportunity
to review and comment. The PR can be merged into the main repository only after the CI tests pass, and the
reviewing team members have approved the merge.

The code review that takes place in the PR process helps to eliminate software defects at an early stage of the
lifecycle. The CI testing ensures that the latest version of the code in the repository will always be tested and
usable by other developers, both within this collaboration and for outside stakeholders. This workflow has been
proven for a variety of application efforts developed under the Ristra Project and in collaborations outside Ristra.
Indeed, this type of workflow is common in industry and academia, and is consistent with the software engineering
practices being fielded across other ASC projects. As the proposed code will service these communities, it is natural
for our team to partner with the CS experts within Ristra to adopt this type of software engineering environment.

8 Experience in Radiographic Analysis of Data

Combined, the team has over fifty years of experience in analyzing DARHT radiographic data as well as data taken
at the U1A facility and FXR. During the past two decades, this team has analyzed over 90% of all of the DARHT shots.
As such, the tremendous advantage that our team has in analyzing radiographic data is a major strength of the team
and we will fully exploit this to our advantage as new techniques are developed and then tested by our experienced
radiographic analysts. Furthermore, a key step in analyzing experimental data is the pre-processing. To this end we
will utilize and improve upon the work by our team member Dr. Warthen. In addition, the experience in analyzing
the data in conjunction with partnership with both the Engineering and J Divisions experimental facilities will
enable real time feedback in proposed methods.

9 Collaborators

In developing an integrated framework for solving DARHT radiographic reconstruction problems, along with other
radiographic data, we have assembled a world class team consisting of both Los Alamos National Laboratory staff,
as well as researchers from outside the laboratory. Within the laboratory our team includes members from the
theoretical design group XTD as well as collaborators from CCS to assist in the areas of computational hydrody-
namics , theoretical hydrodynamics, and most importantly to address first hand the needs of the customer. In
addition, our team has support from T-Division in the area of inverse methods, plug and play priors, as well as
machine learning. Physics as well J Division provide both the experience in radiographic science, the forward
modeling development, as well as beam physics. The Engineering Division brings both tomographic and radio-
graphic experience as well as the ability to utilize the Microtron to support the development and validation of new
physics models to bolster the forward model. Finally, the support from XCP provides the over code integration and
software engineering support to develop a software package to support the laboratory.

In addition, we have extensive University collaborations to provide world class support as well as a pipeline of
students that will be the future developers and users of the software. Finally, we also have had extensive conversa-
tions with our fellow researchers at the Lawrence Livermore, and AWE about their participation in supporting this
effort.

10 Leveraged Activities

As discussed within this proposal to facilitate the development of HART we will leverage numerous currently
funded activities. These activities are as follows:
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• DTRA/NNSA Emergency Response Software

• LDRD Prioritizing the Prior

• J-Division Limited View Tomography

• J-5 Capability Funding for Beam Physics

• RISTRA Software Integration Support

11 FTEs and Budgets

To develop a comprehensive set of radiographic reconstruction tools for analysis of the DARHT radiographic data
we plan to leverage numerous efforts that will contribute to the success of this Project. These efforts include the
DTRA/NNSA effort to develop radiographic reconstructions for the Emergency Response Applications as well as
efforts to develop limited view radiographic reconstruction applications funded by J-Division. In addition, we
also have efforts to develop more fundamental efforts in algorithm development to address dynamic radiography
and advanced priors for inverse problem solving. Finally, the software engineering and integration efforts will be
supported by the ASC Program. These efforts will substantially reduce the cost to the hydro Program to develop
a radiographic reconstruction code. Accordingly, our proposed budget and 3-5 year plan to support this effort is
provided in Appendix B

12 Radiographic Analyst Requests

To ensure the seamless transition from the BIE to HART we have carefully considered the current radiographic user
community, as over 90-95%, of the DARHT radiographic analyses have been performed by our team members.
Here we highlight additional elements that may not have been addressed within the body of our proposal that are
integral to the development of a production code as well as reference relevant sections of proposal.

• Our code will rely almost exclusively on well tested/peer reviewed algorithms from the computational imag-
ing community. This will limit issues that have plagued the BIE for the past two decades. Furthermore,
our team members are world leaders in the computational imaging community having developed many of
the algorithms that are now commonly utilized in modern reconstruction algorithms including the GGMRF
prior, plug and play prior, as well as physics models necessary for correct forward modeling.

• We will conform to reasonable software quality assurance standards, including testing. By partnering with
XCP, RISTRA Project, we will adhere to modern software standards.

• Effective 3D functionality (i.e., all functionality available in 2D, runs within a reasonable amount of time,
optimizable, etc.). As world leaders in computational imaging with experience in tomographic methods
all ray tracing will be performed using validated codes. Furthermore,our extensive experience in modern
parallelizable optimization techniques will ensure better performance than that achieved by the BIE. Fur-
thermore, our demonstrated machine learning mappings will enable both more accurate reconstructions in
orders of magnitude less time than traditional forward modeling.

• Direct translation of experimental parameters to tool inputs. As we have a multi-disciplinary team of com-
putational imaging, physicists, and radiography/beam physicists having performed in excess of 95% of the
radiographic reconstructions at DARHT as well as operated the accelerators at DARHT we will ensure the
physical interpretability of our results as well as ties to physics input parameters.

• MPI (message passing interface); intrinsically parallelizable to use high performance computing (HPC) ma-
chines. Our codes will be developed with massively parallel architecture in mind. In addition our partnership
with XCP (Ristra Project) will enable the use of software architecture to promote best software practices.

• Easy importing of external tools and libraries. Our computer archetecture will afford the ability to utilize
external tools and libraries. Furthermore, the integration into RISTRA will enable unprecedented integration
with X-Div software.
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• Options for both graphical (GUI) and scripted interfaces. Both options for interfacing will be incorporated.

• Ability to integrate CAD models or other standard model file formats . Our team has developed routines to
perform mappings of BIE ascii format files in transport codes as well as routines to utilize X-Division output
dumps (Display). In addition, we have previously demonstrated the ability to take ABAQUS models as well
as CAD models as inputs into our transport routines.

• Open source, industry accepted modern software language (avoidance of anything proprietary, or licens-
ing fees, as much as possible) e.g. Python versus Matlab. Our team will not employ the software language
of SmallTalk nor other Matlab or other propriety software. Furthermore, by partnering with XCP, RISTRA
Project, we will adhere to modern software standards.

• Modular ability to read/write files supporting various hydro codes. We will continue to utilize Ensight and
other processing codes in conjunction with our X-Division partners and code developers to enable the seam-
less use of X-Division code outputs. Furthermore, by partnering with the RISTRA Project we will also ensure
integration of reconstructions into X-Division software for supplemental analyses.

• Ability to tie into or easily compare to X-hydrocodes. By partnering with XCP and working closely with XTD
we plan to integrate HART into RISTRA thereby allowing for seamless integration and comparisons.

• Ability to be straightforwardly used on a variety of radiographic sources/platforms. We will utilize computer
software that enables elements of the code to be run on both HPC as well as local networks.
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A Appendix A Code Capability Summary

Table 1: Comparison of the capabilities in the different radiographic codes.
BIE BIE 2.0 HART

Forward Modeling Approach X X X
Scatter Closure Relationship X
Noise Treatment X
Detector Model Empirical Empirical X
Flat Field Treatment Empirical Empirical Utilize FFT and Machine Learning
Spot Movement Empirical Empirical Integrated Prior from Beam Diagnostics
Tomographic Capability X
Plug and Play Priors X
Hydrodynamic Prior X
Modern Optimization Algorithms X
Machine Learning Algorithms X
MPI X X
Real Time Completion of Density Reconstruction X
Modern Computing Language X X
AWE/LLNL Collaboration X X X
University Collaboration X
Other Agency Funding X

B Appendix B Funding Request and Proposed Schedule of Work

We propose to develop the HART Toolbox using by leveraging our work. To develop our three major tools we
propose a budget of 800 k/yr for 5 years. Figure 13 presents a Gantt chart to show the progress of the Project
activities.

Figure 13: Gantt chart of the activities for HART development.
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